Spectroscopic characterization of the iron-sulfur cluster in Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase.
نویسندگان
چکیده
The properties of the [4Fe-4S] cluster in glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis have been investigated using low temperature magnetic circular dichroism, electron paramagnetic resonance (EPR), and resonance Raman spectroscopies. The Raman spectra of the native enzyme in the Fe-S stretching region show a [4Fe-4S]2+ cluster that is structurally very similar to those in simple redox proteins. Photochemical reduction mediated by 5-deazaflavin with oxalate as the electron donor resulted in [4Fe-4S]+ clusters with a mixture of ground state spin multiplicities. Magnetic circular dichroism and EPR studies of samples ranging in concentration from 0.15 to 0.4 mM concur in finding S = 3/2 [4Fe-4S]+ clusters with predominantly axial and positive zero field splitting as the dominant species. The EPR studies also revealed minor contributions from S = 1/2 [4Fe-4S]+ centers and an S = 5/2 species. The latter becomes the dominant component in more concentrated samples (approximately 2 mM), and arguments are presented in favor of assignment to S = 5/2 [4Fe-4S]+ clusters rather than adventitiously bound high spin Fe(III) ions. The concentration-dependent spin state heterogeneity of the [4Fe-4S]+ cluster in glutamine phosphoribosylpyrophosphate amidotransferase is discussed in light of the magnetic and electronic properties of the [4Fe-4S]+ centers in other enzymes and proteins.
منابع مشابه
The degA gene product accelerates degradation of Bacillus subtilis phosphoribosylpyrophosphate amidotransferase in Escherichia coli.
A search for genes involved in the inactivation and degradation of enzymes in sporulating Bacillus subtilis led to identification of the B. subtilis degA gene, whose product stimulates degradation of B. subtilis glutamine phosphoribosylpyrophosphate amidotransferase in Escherichia coli cells. degA encodes a 36.7-kDa protein that has sequence similarity to several E. coli and B. subtilis regulat...
متن کاملRole of NifS in maturation of glutamine phosphoribosylpyrophosphate amidotransferase.
Glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis is synthesized as an inactive precursor that requires two maturation steps: incorporation of a [4Fe-4S] center and cleavage of an 11-residue NH2-terminal propeptide. Overproduction from a multicopy plasmid in Escherichia coli leads to the formation of soluble proenzyme and mature enzyme forms as well as a small fracti...
متن کاملRegulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase activity by end products.
General kinetic properties and inhibition by purine end products of highly purified glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis have been studied. The enzyme was subject to specific inhibition by the purine nucleotides AMP, ADP, GMP, and GDP. AMP was by far the most effective inhibitor. The action of the inhibitors displayed positive cooperativity and was antag...
متن کاملMutational analysis of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing.
Glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis is a member of an N-terminal nucleophile hydrolase enzyme superfamily, several of which undergo autocatalytic propeptide processing to generate the mature active enzyme. A series of mutations was analyzed to determine whether amino acid residues required for catalysis are also used for propeptide processing. Propeptid...
متن کاملEvidence that the iron-sulfur cluster of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase determines stability of the enzyme to degradation in vivo.
Bacillus subtilis glutamine P-Rib-PP amidotransferase contains a [4Fe-4S] cluster which is essential for activity. The enzyme also undergoes removal of 11 NH2-terminal residues from the primary translation product in vivo to form the active enzyme. It has been proposed that oxidative inactivation of the FeS cluster in vivo is the first step in degradation of the enzyme in starving cells. Four m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 264 31 شماره
صفحات -
تاریخ انتشار 1989